# inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Richard Welter,<sup>a</sup>\* Hedi Omrani<sup>b</sup> and Rene Vangelisti<sup>c</sup>

<sup>a</sup>Laboratoire de Chimie des métaux de transition (UMR 7513 CNRS), Université Louis Pasteur, 4 rue Blaise Pascal, F-67070 Strasbourg CEDEX, France, <sup>b</sup>Faculté des Sciences, Département de Chimie, Monastir 5000, Tunisia, and <sup>c</sup>Labor-Minéral, UMR 7555, Université Henri Poincaré Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre les Nancy CEDEX, France

Correspondence e-mail: welter@chimie.u-strasbg.fr

#### Key indicators

Single-crystal X-ray study T = 293 KMean  $\sigma(\text{Au-Br}) = 0.002 \text{ Å}$  R factor = 0.049 wR factor = 0.097Data-to-parameter ratio = 25.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# The structure of the title compound, NaAuBr<sub>4</sub>·2H<sub>2</sub>O is isomorphous with that of NaAuCl<sub>4</sub>·2H<sub>2</sub>O. The Na, Au and Br atoms lie on the mirror plane. The AuBr<sub>4</sub><sup>-</sup> anions are nearly square planar with Au-Br bond lengths in the range 2.415 (2)–2.433 (2) Å.

Sodium tetrabromoaurate(III) dihydrate

Received 20 November 2000 Accepted 22 December 2000 Online 10 January 2001

### Comment

Previous studies concerning the crystal structure determination of the anhydrous MAuX<sub>4</sub> compounds and the corresponding dihydrate  $MAuX_4 \cdot 2H_2O$  (*M* is Na or K, X is Cl or Br) have shown that: (i) KAuBr<sub>4</sub> (Omrani et al., 1999), KAuBr<sub>4</sub>·2H<sub>2</sub>O (Omrani et al., 1986), KAuCl<sub>4</sub> (Jones & Bembenek, 1992) and NaAuCl<sub>4</sub> (Jones et al., 1988) crystallize in the monoclinic system with the space group  $P2_1/c$  (or  $P2_1/c$ n); (ii) NaAuCl<sub>4</sub>·2H<sub>2</sub>O (Bonamico & Dessy, 1965) and KAuCl<sub>4</sub>·2H<sub>2</sub>O (Theobald & Omrani, 1980) crystallize in the orthorhombic system with the space group Pnma and Pbcn, respectively. All these compounds are characterized by the occurrence of square-planar  $AuX_4^-$  anions with typical Au-X distances (approximately 2.29 Å for Au-Cl bond and 2.43 Å for Au-Br bond). In this class of based gold coordination compounds, only both NaAuBr<sub>4</sub> and NaAuBr<sub>4</sub>·2H<sub>2</sub>O compounds were not yet characterized. In the present work, we report on the crystal structure of the dihydrate.

The structure of the title compound, NaAuBr<sub>4</sub>·2H<sub>2</sub>O, (I), is isomorphous with that of NaAuCl<sub>4</sub>·2H<sub>2</sub>O (Bonamico & Dessy, 1965). The orthorhombic cell contains four Au atoms and the AuBr<sub>4</sub><sup>-</sup> anions are nearly square planar (Fig. 1). The Au, Br and Na atoms lie on the mirror plane. The structure can also be described as a pseudo-lamellar compound in which the NaAuBr<sub>4</sub> planes (at  $y = \frac{1}{4}$  and  $\frac{3}{4}$ ) are piled up along the *b* axis and connected *via* Na-O-Na bonds. There is only one independent Na atom, which is coordinated by four O atoms at distances in the range 2.437 (12)–2.509 (13) Å and three Br atoms at distances in the range 3.150 (10)–3.300 (10) Å (Table 1).

### **Experimental**

Crystals were prepared by dissolving powder of NaAuCl<sub>4</sub>·2H<sub>2</sub>O in aqueous HBr (1 M). The solution was slowly evaporated (two months) at 300 K. After complete crystallization, dark brick red crystals were obtained. A single-crystal was then sealed in Lindemann glass capillary.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Crystal data

NaAuBr<sub>4</sub>·2H<sub>2</sub>O  $M_r = 575.63$ Orthorhombic, *Pnma*  a = 13.320 (6) Å b = 7.253 (2) Å c = 9.420 (3) Å V = 910.1 (6) Å<sup>3</sup> Z = 4 $D_x = 4.201$  Mg m<sup>-3</sup>

Data collection

Enraf-Nonius CAD-4 diffractometer  $\omega$ -2 $\theta$  scans Absorption correction:  $\psi$  scan (SORTAV; Blessing, 1987)  $T_{min} = 0.051, T_{max} = 0.363$ 1368 measured reflections 1368 independent reflections

#### Refinement

 Refinement on  $F^2$   $w = 1/[\sigma^2(F_o^2) + (0.0178P)^2$ 
 $R[F^2 > 2\sigma(F^2)] = 0.049$  + 12.7490P] 

  $wR(F^2) = 0.097$  where  $P = (F_o^2 + 2F_c^2)/3$  

 S = 1.09  $(\Delta/\sigma)_{max} < 0.001$  

 1368 reflections
  $\Delta\rho_{max} = 2.09 \text{ e Å}^{-3}$  

 54 parameters
  $\Delta\rho_{min} = -1.57 \text{ e Å}^{-3}$  

 H-atom parameters constrained
 Extinction correction: SHELXL97

 Extinction coefficient: 0.0047 (3)

#### Table 1

Selected geometric parameters (Å,  $^{\circ}$ ).

| Au-Br4              | 2.415 (2)         | Br4–Na                             | 3.300 (10)                        |
|---------------------|-------------------|------------------------------------|-----------------------------------|
| Au-Br3              | 2.427 (2)         | Na-O                               | 2.437 (12)                        |
| Au-Br1              | 2.431 (2)         | Na-O <sup>ii</sup>                 | 2.437 (12)                        |
| Au-Br2              | 2.433 (2)         | Na-O <sup>iii</sup>                | 2.509 (13)                        |
| Br1-Na <sup>i</sup> | 3.163 (9)         | Na-O <sup>iv</sup>                 | 2.509 (13)                        |
| Br3-Na <sup>i</sup> | 3.150 (10)        |                                    | . ,                               |
| Br4-Au-Br3          | 88.41 (8)         | Br4-Au-Br2                         | 90.19 (8)                         |
| Br4-Au-Br1          | 180.00 (8)        | Br3-Au-Br2                         | 178.60 (7)                        |
| Br3-Au-Br1          | 91.59 (8)         | Br1-Au-Br2                         | 89.81 (8)                         |
| Symmetry codes: (i) | x, y, z - 1; (ii) | $x, \frac{1}{2} - y, z;$ (iii) 1 – | $x, \frac{1}{2} + y, 1 - z;$ (iv) |

Ag  $K\alpha$  radiation

reflections

 $\theta = 8.3 - 10.4^{\circ}$  $\mu = 18.20 \text{ mm}^{-1}$ 

T = 293 (2) K

 $\theta_{\rm max} = 22.9^\circ$ 

 $h = 0 \rightarrow 18$ 

 $k=0\rightarrow 10$ 

 $l = 0 \rightarrow 13$ 

2 standard reflections

frequency: 180 min

intensity decay: 0.1%

Cell parameters from 25

Parallelepiped, dark red  $0.16 \times 0.09 \times 0.06$  mm

905 reflections with  $I > 2\sigma(I)$ 

1 - x, -y, 1 - z.

In the final electron-density difference map, both minimum  $(-1.57 \text{ e} \text{ Å}^{-3} \text{ at } 0.3594, 0.2500, 0.5494)$  and maximum  $(2.09 \text{ e} \text{ Å}^{-3} \text{ at } 0.4964, 0.1831, 0.2760)$  occur respectively at 0.96 Å away from Br4 and 1.72 Å from Na. They may be due to the irregular crystal shape and the approximate absorption correction. The H atoms were fixed with O–H distances of 0.95 Å.

Data collection: *CAD*-4 *Software* (Enraf–Nonius, 1989); cell refinement: *CAD*-4 *Software*; data reduction: *CADAK* and *SORTAV* (Blessing, 1987); program(s) used to solve structure: *SHELXS*97



Part of the crystal structure. Displacement ellipsoids are shown at 50% probability levels. Symmetry codes: (i) x, y, z - 1; (ii) x,  $\frac{1}{2} - y$ , z; (iii) 1 - x,  $\frac{1}{2} + y$ , 1 - z; (iv) 1 - x, -y, 1 - z.

(Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 1995); software used to prepare material for publication: *SHELXL*97.

We are grateful to Dr Slimane Dahaoui (Laboratoire de Cristallographie et Modelization des Materiaux Mineraux et Biologiques, Faculté des Sciences de NANCY I) for his help during the data collection.

#### References

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.

- Bonamico, M. & Dessy, G. (1965). Atti della Accademia Nazionale dei Lincei, Rend. Sc. Fis. Mater. e Nat. 39, 504–509.
- Dowty, E. (1995). *ATOMS for Windows*. Version 3.2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Jones, P. G. & Bembenek, E. (1992). J. Crystallogr. Spectrosc. Res. 22, 397–401. Jones, P. G., Hohbein, R. & Schwarzmann, E. (1988). Acta Cryst. C44, 1164–

1166.

Omrani, H., Theobald, F. & Vivier, H. (1986). Acta Cryst. C42, 1091-1092.

Omrani, H., Welter, R. & Vangelisti, R. (1999). Acta Cryst. C55, 13-14.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Theobald, F. & Omrani, H. (1980). Acta Cryst. B36, 2932-2935.